Viscoelastic parameter identification of human brain tissue.

نویسندگان

  • S Budday
  • G Sommer
  • G A Holzapfel
  • P Steinmann
  • E Kuhl
چکیده

Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material parameters-an elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constants-to model the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36kPa and white matter with 0.35kPa were equally stiff, whereas conditioned gray matter with 0.52kPa was three times stiffer than white matter with 0.18kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned constants were smaller. These rheological differences suggest a different porosity between both tissues and explain-at least in part-the ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheological characterization of human brain tissue.

The rheology of ultrasoft materials like the human brain is highly sensitive to regional and temporal variations and to the type of loading. While recent experiments have shaped our understanding of the time-independent, hyperelastic response of human brain tissue, its time-dependent behavior under various loading conditions remains insufficiently understood. Here we combine cyclic and relaxati...

متن کامل

A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...

متن کامل

The Influence of the Specimen Shape and Loading Conditions on the Parameter Identification of a Viscoelastic Brain Model

The mechanical properties of brain under various loadings have been reported in the literature over the past 50 years. Step-and-hold tests have often been employed to characterize viscoelastic and nonlinear behavior of brain under high-rate shear deformation; however, the identification of brain material parameters is typically performed by neglecting the initial strain ramp and/or by assuming ...

متن کامل

A Computational study on the effect of different design parameters on the accuracy of biopsy procedure

Needle insertion is a minimally invasive technique in diagnosing and treating tumors. However, to perform a surgery accurately, the tissue should have minimum amount of displacement during needle insertion so that it reaches the target tissue. Therefore, the tissue membrane has to move less to decrease rupturing under the membrane. In this study, the effect of different design parameters on dis...

متن کامل

A Novel Adaptive Order/Parameter Identification Method for Variable Order Systems Application in Viscoelastic Soft Tissue Modeling

This paper presents an adaptive system identification approach to identify the order and parameters of a specific type of variable order systems, which, as a motivating example, describes the stress-strain relation of viscoelastic materials. First, the concept of non-integer order modeling will be introduced. Next, the proposed order/parameter identification approach will be presented. Afterwar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2017